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Abstract
It is found that the finite-energy spectral properties of the one-dimensional
Hubbard model are controlled by the scattering of charged η-spin-zero 2ν-
holon composite objects, spin-zero 2ν-spinon composite objects, and charged
η-spinless and spinless objects, rather than by the scattering of independent η-
spin-1/2 holons and spin-1/2 spinons. Here ν = 1, 2, . . .. The corresponding
S matrix is calculated and its relation to the spectral properties is clarified.

The description of the microscopic scattering mechanisms behind the unusual finite-energy
spectral properties observed in low dimensional materials has remained until now an interesting
open problem. The one-dimensional (1D) Hubbard Hamiltonian is the simplest model for
the description of electronic correlations in a chain of Na sites. It reads Ĥ = T̂ + U D̂ −
[U/2][N̂ − Na/2], where T̂ = −t

∑
σ=↑,↓

∑Na
j=1[c†

j,σ c j+1,σ + h.c.] is the kinetic energy

operator, D̂ = ∑
j n̂ j,↑n̂ j,↓ the electron double-occupation operator, N̂ = ∑

j,σ n̂ j,σ the

electron number operator, and the operator c†
j,σ creates a spin-σ electron at site j . In contrast

to other interacting models [1] and in spite of the model exact solution [2], until recently little
was known about its finite-energy spectral properties for finite values of the on-site repulsion
U . Recently, the problem was studied using the pseudofermion dynamical theory (PDT)
introduced in [3, 4], whose predictions agree quantitatively for the whole momentum and
energy bandwidth with the peak dispersions observed for the TCNQ stacks by angle-resolved
photoelectron spectroscopy for the quasi-1D conductor TTF-TCNQ and are consistent with
the phase diagram observed for the (TMTTF)2X and (TMTSF)2X series of compounds [5].
More recently, results for the TTF-TCNQ spectrum consistent with those from the PDT were
obtained by the dynamical density matrix renormalization group method [6]. Within the
PDT, the finite-energy spectral properties are controlled by the functional character of the
pseudofermion anticommutators [4, 5]. However, the relation of these anticommutators to
the elementary-excitation S matrix remains an open question. Moreover, the fact that these
anticommutators do not couple quantum objects with differentη-spin or spin projections seems
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to be inconsistent with the form of the S matrix for elementary excitations calculated in [7, 8].
Thus, the study of the relation of the PDT to the elementary-excitation scattering is an important
issue both for the clarification of that apparent inconsistency and the further understanding
of the scattering mechanisms that control the exotic finite-energy spectral properties of low
dimensional materials and of the new quantum systems described in terms of cold fermionic
atoms on an optical lattice [5, 9].

In this paper the above problems are solved by identifying the active scatterers and
scattering centres which control the dynamical properties, calculating their S matrix, and
clarifying its relation to the spectral properties. Moreover, the connection to the S matrix
of [7, 8] is also clarified. The number of lattice sites Na is considered large, units of Planck
constant and lattice spacing one are used, and the lattice length is denoted by L = Na and the
electronic charge by −e. The densities n = N/L and spin densities m = [N↑ − N↓]/L are in
the domains 0 < n � 1 and 0 � m < n, respectively. The above Hamiltonian commutes with
the generators of the η-spin and spin SU(2) algebras [10]. Here the η-spin and spin values
of an energy eigenstate are called η and S, respectively, and the corresponding projections ηz

and Sz . A key result needed for our study is that all energy eigenstates of the model can be
described in terms of occupancy configurations of η-spin-1/2 holons, spin-1/2, spinons, and
η-spinless and spinless c0 pseudoparticles [10]. Below, the notation ±1/2 holons and ±1/2
spinons is used according to the values of the η-spin and spin projections, respectively. The
electron–rotated-electron unitary transformation [10] maps the electrons onto rotated electrons
such that rotated-electron double occupation, no occupation, and spin-up and spin-down single
occupation are good quantum numbers for all values of U . The ±1/2 holons of charge ±2e
and zero spin and the chargeless ±1/2 spinons are generated from the electrons by that unitary
transformation. The corresponding holon and spinon number operators M̂c,±1/2 and M̂s,±1/2,
respectively, are of the form given in equation (24) of [10] and involve the electron–rotated-
electron unitary operator. While the −1/2 and +1/2 holons refer to the rotated-electron doubly
occupied and unoccupied sites, respectively, the −1/2 and +1/2 spinons correspond to the
spin degrees of freedom of the spin-down and spin-up rotated-electron singly occupied sites,
respectively. The charge degrees of freedom of the latter sites are described by the spinless and
η-spinless c0 pseudoparticles, which are composite objects made up of a charge −e chargeon
and a charge +e antichargeon [10]. The cν pseudoparticles (and sν pseudoparticles) such
that ν = 1, 2, . . . are η-spin singlet (and spin singlet) 2ν-holon (and 2ν-spinon) composite
objects. Thus, Mα,±1/2 = Lα,±1/2 +

∑∞
ν=1 νNαν where α = c, s, Nαν denotes the number of

αν pseudoparticles, and Lc,±1/2 = η ∓ ηz and Ls,±1/2 = S ∓ Sz give the numbers of ±1/2
Yang holons and ±1/2 HL spinons, respectively. Those are the holons and spinons that are
not part of composite pseudoparticles. All energy eigenstates can be described by occupancy
configurations of αν pseudoparticles, −1/2 Yang holons, and −1/2 HL spinons [10]. For the
ground state, Nc0 = N , Ns1 = N↓, Nαν = Lc,−1/2 = Ls,−1/2 = 0 for αν �= c0, s1.

In our study we consider the pseudofermion subspace (PS), which is spanned by the initial
ground state |GS〉 and all excited energy eigenstates contained in Ô|GS〉, where Ô is any one-
electron or two-electron operator. In reference [3] it is shown that within the PS there is a
unitary transformation that maps the αν pseudoparticle or hole onto the αν pseudofermion
or hole, respectively. These objects differ only in the discrete momentum values. The αν

pseudoparticle or hole has discrete bare-momentum values q j = [2π/L]I αν
j such that I αν

j are
consecutive integers or half-odd integers [10]. These values are good quantum numbers whose
allowed occupancies are one (pseudoparticle) and zero (hole) only. The αν pseudofermion or
hole has discrete canonical-momentum values given by

q̄ j = q̄(q j) = q j + Q�
αν(q j)/L, (1)
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where j = 1, 2, . . . , N∗
αν , N∗

αν = Nαν + Nh
αν , and Nh

αν denotes the number of αν

pseudofermion holes, which equals that of αν pseudoparticle holes, whose value is given
in equation (B.11) of [10]. Such a canonical-momentum pseudofermion is related in [3] to
the local αν pseudofermion by a suitable Fourier transformation. The latter object occupies
the sites of the effective αν lattice [3, 4]. Except for the discrete momentum values, the above
pseudoparticle and pseudofermion have the same properties. Thus, all the energy eigenstates
that span the PS can be described by occupancy configurations of αν pseudofermions, −1/2
Yang holons, and −1/2 HL spinons [3, 4]. The functional,

Q�
αν(q j) = 2π

∑

α′ν′, j

�αν,α′ν′(q j , q j ′)�Nα′ν′(q j ′), (2)

of equation (1) was introduced in [3] and is such that Q�
αν(q j)/2 is found below to be an overall

scattering phase shift. Here �Nαν (q j) ≡ Nαν (q j)− N0
αν (q j) is the αν branch bare-momentum

distribution-function deviation relative to the ground-state value and π�αν,α′ν′(q, q ′) is defined
in [3] and is found below to be an elementary two-pseudofermion phase shift. Note that
Q�

αν(q j) = 0 for the initial ground state and thus q̄ j = q j for that state.
Each transition from the initial ground state to a PS excited energy eigenstate can be

divided into two elementary processes. The first process is a scattering-less finite-energy and
finite-momentum excitation which transforms the ground state onto a well defined virtual state.
This excitation involves the pseudofermion creation, annihilation, and particle–hole processes
associated with the PS excited state and the discrete bare-momentum shift Q0

αν/L, whose
possible values are 0,±π/L [3], for αν branches with finite occupancy in that state. For ν > 0
branches that excitation can involve a change in the number of discrete bare-momentum values.
Although the αν �= c0, s1 branches have no finite pseudofermion occupancy in the initial
ground state, one can define the values N∗

αν = Nh
αν for the corresponding empty bands [10, 3, 4].

In this first step the pseudofermions acquire the excitation momentum and energy needed for the
second-step scattering events. Thus, the virtual state is the in asymptote of the pseudofermion
scattering theory. The second elementary step of the ground-state transition involves a set of
elementary scattering events where all αν pseudofermions or holes of momentum q j + Q0

αν/L
of the in asymptote are the scatterers. Each of these elementary scattering events leads to a
phase factor in the wavefunction of the αν pseudofermions or holes given by

Sαν,α′ν′(q j , q j ′) = ei2π�αν,α′ν′ (q j ,q j ′ )�Nα′ν′ (q j ′ ). (3)

The scattering centres are theα′ν ′ pseudofermions or holes of momentum q j ′+Q0
αν/L created in

the ground-state–virtual-state transition and thus such that �Nα′ν′(q j ′) �= 0. Indeed, note that
Sαν,α′ν′(q j , q j ′) = 1 for �Nα′ν′(q j ′) = 0. There is a one-to-one correspondence between the
local rotated-electron occupancy configurations that describe the PS energy eigenstates and the
local αν pseudofermion occupancy configurations and −1/2 Yang holon and −1/2 HL spinon
occupancies that describe the same states [4]. The corresponding effective αν lattices have the
same length L as the original lattice. Our analysis refers to periodic boundary conditions and
the thermodynamic limit L → ∞. Under a ground-state–excited-energy-eigenstate transition,
by moving the αν pseudofermion or hole of initial ground-state momentum q j once around
the length-L lattice ring, its wavefunction acquires the following overall phase factor:

Sαν(q j) = eiQ0
αν

∏

α′ν′

N∗
α′ν′∏

j ′=1

Sαν,α′ν′(q j , q j ′) = eiQαν(q j ); j = 1, 2, . . . , N∗
αν . (4)

Interestingly, Qαν(q j)/L is the net αν pseudofermion or hole discrete canonical-momentum
shift that arises due to the above transition [3, 4] and thus, in this equation,

Qαν(q j) = Q0
αν + Q�

αν(q j) (5)
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is such that Qαν(q j)/2 is an αν pseudofermion or hole overall phase shift. Indeed, if when
moving around the lattice ring the αν pseudofermion or hole departs from the point x = 0 and
arrives at x = L/2, one finds that limx→L/2 q̄x = qx + Qαν(q)/2 where q refers to the initial
ground state. From equations (2) and (5) it then follows that π�αν,α′ν′(q j , q j ′) is an elementary
two-pseudofermion phase shift. (If instead one considers x = 0 and x = L, the overall
phase shift and the two-pseudofermion phase shifts read Qαν(q) and 2π�αν,α′ν′(q j , q j ′),
respectively [13]. However, the choice of definition is a matter of taste and the uniquely
defined quantity is the above S matrix.)

Several properties play an important role in the pseudofermion scattering theory. First, the
elementary scattering processes associated with the phase factor (3) conserve the total energy
and total momentum. Second, the elementary scattering processes are of forward-scattering
type and thus conserve the individual in asymptote αν pseudofermion or hole momentum and
energy. These processes also conserve the αν branch, usually called the channel in scattering
language. Moreover, the scattering amplitude does not connect objects with different η-spin or
spin. Last but not least, for each αν pseudofermion or hole of initial ground-state momentum
q j , the S matrix associated with the ground-state–excited-energy-eigenstate transition is simply
the phase factor given in equation (4). For each excited energy eigenstate (out asymptote) the
number of αν pseudofermions plus the number of αν pseudofermion holes whose S matrix is
of the form (4) is given by Na + N∗

s1 +
∑

αν �=c0,s1 θ(|�Nαν |)N∗
αν . Here θ(x) = 1 for x > 0 and

θ(x) = 0 for x = 0.
Importantly, the form of the scattering part of the overall phase shift (5), equation (2),

reveals that the value of such a phase shift functional is independent of the changes in the
occupation numbers of the ±1/2 Yang holons and ±1/2 HL spinons. Thus, these objects
are not scattering centres. Moreover, they are not scatterers, once their momentum values
remain unchanged under the ground-state–excited-energy-eigenstate transitions. In turn, the
pseudofermions and holes are scatterers and scattering centres. Since the c0 pseudofermion is
a η-spinless and spinless object and for ν > 0 the αν pseudofermions are η-spin (α = c) and
spin (α = s) singlet 2ν-holon and 2ν-spinon composite objects, respectively, their S matrix
has dimension one: it is the phase factor (4). The factorization of the Bethe-ansatz (BA)
bare S matrix for the original spin-1/2 electrons is associated with the so called Yang–Baxter
equation (YBE) [7]. On the other hand, the factorization of the S matrix (4) in terms of the
elementary S matrices Sαν,α′ν′(q j , q j ′), equation (3), is commutative. Such a commutativity is
stronger than the symmetry associated with the YBE and results from the elementary S matrices
Sαν,α′ν′(q j , q j ′) being simple phase factors, instead of matrices of dimension larger than one.
This seems to be inconsistent with all PS energy eigenstates being described by occupancy
configurations which, besides c0 pseudofermions, involve finite spin-1/2 spinons and η-spin-
1/2 holons [10]. Indeed, the S matrix of finite η-spin or spin objects has dimension larger than
one. However, due to the correlations the quantum liquid self-organizes in such a way that the
scatterers and scattering centres are the c0 pseudofermions, η-spin singlet 2ν-holon composite
cν pseudofermions, and spin singlet 2ν-spinon composite sν pseudofermions.

Let us clarify how the αν pseudofermion S matrix (4) controls the unusual spectral
properties of the model. Consider an αν pseudofermion of canonical momentum q̄ and an
α′ν ′ pseudofermion of canonical momentum q̄ ′ such that the values q̄ and q̄ ′ correspond to
a PS excited energy eigenstate and the initial ground state, respectively, and thus q̄ ′ = q ′.
Importantly, from the use of equation (4) it is found that the pseudofermion anticommutation
relations introduced in [3] can be expressed solely in terms of the difference [q̄ − q̄ ′] and the
S matrix of the αν pseudofermion associated with the excited state,

{ f †
q̄,αν , fq̄ ′,α′ν′ } = δαν,α′ν′

1

N∗
αν

[Sαν(q)]1/2e−i(q̄−q̄ ′)/2 Im[Sαν(q)]1/2

sin([q̄ − q̄ ′]/2)
, (6)
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and the anticommutators of two creation or annihilation operators vanish. This reveals that the
S matrix (4) fully controls the pseudofermion anticommutators. Since within the PDT these
anticommutators determine the value of the matrix elements connecting energy eigenstates [4],
it follows that the S matrix (4) controls the spectral properties. If it had dimension larger
than one, the pseudofermion algebra would be much more involved, for the pseudofermion
anticommutators would also be matrices of dimension larger than one.

In [8] the excited states generated from the n = 1 and m = 0 ground state were described
in terms of ±1/2 holon and ±1/2 spinon occupancy configurations. Following the analysis
of [11, 12] for the related spin-1/2 isotropic Heisenberg chain, the holes of the BA length-one
spin string spectrum (spin singlet two-spinon composite s1 pseudoparticle spectrum) were
identified in [8] with the spinons. Inspired by such an interpretation, the studies of the latter
reference identified the holons with the holes of the BA distribution of k ′s [2, 10] spectrum (c0
pseudoparticle spectrum). This is behind the charge ±e found for the ±1/2 holons in [8],which
is half of the value found in [10]. However, the c0 pseudoparticle and hole band occupancy
configurations do not correspond to η-spin SU(2) irreducible representations. Indeed, in [10] it
is shown that for the whole Hilbert space all such representations exactly correspond to the BA
charge string and ∓1/2 Yang holon occupancy configurations. Following directly the analysis
of [11, 12], the studies of [8] consider that the ±1/2 holons and ±1/2 spinons are the scatterers
and scattering centres. This leads to two 4 ×4 S matrices for holons and spinons, respectively,
and a related 16×16 S matrix for the full scattering problem. In spite of being mathematically
elegant and obeying the YBE, these matrices are not suitable for the description of the spectral
properties. Moreover, provided that within the x = 0 and x = L boundary conditions one
defines the overall phase shift as Qαν(q), the phase shifts given in equations (5.19)–(5.21) of the
first paper of [8], which appear in the entries of these matrices, are nothing but very particular
cases of η-spinless and spinless c0 pseudofermion hole or spin-zero s1 pseudofermion hole
overall phase shifts given in equation (5) [13]. Indeed, these phase shifts correspond to the
n = 1 and m = 0 initial ground state and the specific excited states considered in [7, 8]. Let
q1 or q ′

1 be the bare momenta of the scattered c0 or s1 pseudofermion hole, respectively, of
the latter states. For the η-spin triplet, η-spin singlet, and η-spin and spin doublet excited
states considered in these references, it is found that π + Qc0(q1) equals the phase shift δCT

and δCS given in equation (5.19) and δηS in equation (5.21) of the above paper, respectively.
For the spin triplet, spin singlet, and spin and η-spin doublet excited states, Qs1(q ′

1) equals
the shift functions δST and δSS given in equation (5.20) and δSη given in equation (5.21),
respectively [13]. Thus, the BA phase shifts of [7, 8] are particular cases of the c0 and s1
pseudofermion hole overall phase shift functionals of equation (5) and are associated with a
set of excited states which span a subspace smaller than the PS of the one- and two-electron
excitations. According to the studies of [10], for all the transitions associated with these phase
shifts the deviations in the η-spin and spin values are provided by the ±1/2 Yang holon and
±1/2 HL spinon occupancy changes, respectively, which do not contribute to the phase shift
values. In turn, the holes created in the c0 and s1 bands by these transitions are both scatterers
and scattering centres and it follows from the analysis of [10] that they do not correspond to
single ±1/2 holons and ±1/2 spinons, respectively. Moreover, the phase shifts of [7, 8] were
evaluated up to an overall constant term by the method of [14]. Equation (5) provides the full
phase shift value and reveals that the above extra π in δCT , δCS , and δηS is not physical, as
discussed elsewhere [13]. The results reported here also apply to other models. For instance,
for the isotropic Heisenberg chain it is found that the phase changes for the spin singlet and
triplet excited states given in equation (11) of [11] equal the phase shifts for the same states of
a scattered hole of the zero-spin two-spinon s1 pseudofermion spectrum. Thus, for the study
of the spectral properties, these two excited states correspond to two s1 pseudofermion hole S
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matrices, rather than to the single 4 × 4 S matrix of equation (5.1) of [12]. This analysis can
also be extended to the same model with an odd number of lattice sites.

While, through the anticommutators (6), the use of the S-matrix introduced here leads to
a successful description of the spectral features observed for real materials [5], the 16 × 16 S
matrix of [8] is unsuitable for such a task. Indeed, independent ±1/2 holons and ±1/2
spinons that are not part of composite pseudofermions are neither scatterers nor scattering
centres. Interestingly, these objects remain invariant under the electron–rotated-electron
unitary transformation, whereas the pseudofermions and holes are not in general invariant
under such a transformation.

The method for evaluation of the finite-energy spectral weight distributions of a 1D
correlated metal introduced in [4] fully relies on the scattering theory introduced here. The
exotic metallic quantum phase of matter found for quasi-1D compounds [5] by use of such a
method is expected to emerge at finite energies in carbon nanotubes,ballistic wires, and systems
of cold fermionic atoms in one-dimensional optical lattices with on-site atomic repulsion [9].
This confirms the general scientific interest of the scattering theory introduced here. While in
this work it is applied specifically to the 1D Hubbard model, the theory is of general nature
for many integrable quantum problems and therefore will have wide applicability.
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